A tri-oddity is an arrangement of a number of copies of a polyform, not a multiple of 3, with ternary symmetry. It is a variant of an oddity.
Many polyforms cannot have ternary symmetry. Polyiamonds can, along with polyhexes and polycubes.
Here I show minimal known tri-oddities formed by copies of two hexiamonds, using at least one of each. If you find a smaller solution, or solve an unsolved case, please let me know.
A | E | F | H | I | L | O | P | S | U | V | X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | * | 5 | 4 | 8 | — | 4 | 4 | 10 | 13 | 13 | — | 13 |
E | 5 | * | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 |
F | 4 | 5 | * | 7 | 7 | 4 | 4 | 5 | 8 | 7 | 7 | 11 |
H | 8 | 5 | 7 | * | 10 | 4 | 4 | 7 | 7 | 4 | 7 | 10 |
I | — | 5 | 7 | 10 | * | 7 | 4 | 4 | 8 | 8 | — | 4 |
L | 4 | 5 | 4 | 4 | 7 | * | 4 | 5 | 7 | 2 | 7 | 7 |
O | 4 | 4 | 4 | 4 | 4 | 4 | * | 4 | 4 | 4 | 4 | 4 |
P | 10 | 5 | 5 | 7 | 4 | 5 | 4 | * | 4 | 4 | 4 | 7 |
S | 13 | 5 | 8 | 7 | 8 | 7 | 4 | 4 | * | 7 | 7 | 13 |
U | 13 | 5 | 7 | 4 | 8 | 2 | 4 | 4 | 7 | * | 5 | 8 |
V | — | 5 | 7 | 7 | — | 7 | 4 | 4 | 7 | 5 | * | 4 |
X | 13 | 5 | 11 | 10 | 4 | 7 | 4 | 7 | 13 | 8 | 4 | * |
A | E | F | H | I | L | O | P | S | U | V | X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | * | 5 | 4 | 8 | — | 4 | 4 | 10 | 16 | 13 | — | ? |
E | 5 | * | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 |
F | 4 | 5 | * | 7 | 7 | 4 | 4 | 5 | 10 | 7 | 11 | 16 |
H | 8 | 5 | 7 | * | 10 | 4 | 4 | 7 | 7 | 4 | 7 | 14 |
I | — | 5 | 7 | 10 | * | 7 | 4 | 4 | 13 | 13 | — | 4 |
L | 4 | 5 | 4 | 4 | 7 | * | 4 | 7 | 7 | 4 | 7 | 7 |
O | 4 | 4 | 4 | 4 | 4 | 4 | * | 4 | 4 | 4 | 4 | 4 |
P | 10 | 5 | 5 | 7 | 4 | 7 | 4 | * | 4 | 4 | 4 | 7 |
S | 16 | 5 | 10 | 7 | 13 | 7 | 4 | 4 | * | 7 | 10 | 19 |
U | 13 | 5 | 7 | 4 | 13 | 4 | 4 | 4 | 7 | * | 7 | 10 |
V | — | 5 | 11 | 7 | — | 7 | 4 | 4 | 10 | 7 | * | 4 |
X | ? | 5 | 16 | 14 | 4 | 7 | 4 | 7 | 19 | 10 | 4 | * |
Last revised 2024-06-24.