Convex Shapes from Isolated Hexiamond Pairs
A hexiamond is a plane figure
formed by joining six equal equilateral triangles edge to edge.
Here I show the smallest known convex shapes
that can be formed by copies of two hexiamonds, using at least
one of each, and strongly isolating the copies of one so that they do not
touch, not even at corners.
If you find a smaller solution, please write.
See also
Table of Results
A yellow cell indicates a pair for which no convex shape is known
even without isolation.
|
Isolated Hexiamond |
---|
| I | L | E | V | U | F | A | H | S | O | P | X |
I
| *
| 9
| ?
| 4
| 16
| 4
| 4
| 23
| 17
| 3
| 4
| ?
|
L
| 5
| *
| 7
| 7
| 4
| 5
| 4
| 7
| 7
| 4
| 6
| 8
|
E
| ?
| ?
| *
| ?
| ?
| 4
| ?
| ?
| ?
| ?
| ?
| ?
|
V
| 3
| 21
| ?
| *
| 22
| 12
| 10
| 12
| 61
| 4
| 2
| 22
|
U
| 8
| 4
| 3
| 8
| *
| 21
| ?
| 7
| 3
| 13
| 4
| 32
|
F
| 3
| 4
| 10
| 10
| 5
| *
| 2
| 9
| 7
| 21
| 4
| 17
|
A
| 3
| 22
| ?
| 10
| 12
| 2
| *
| 30
| ?
| 25
| 11
| ?
|
H
| 12
| 9
| ?
| 35
| 7
| 6
| ?
| *
| ?
| 12
| 4
| ?
|
S
| ?
| ?
| ?
| 18
| 3
| ?
| ?
| ?
| *
| ?
| 3
| ?
|
O
| ?
| ?
| ?
| 5
| ?
| ?
| ?
| ?
| ?
| *
| 4
| 3
|
P
| 3
| 6
| 14
| 2
| 3
| 4
| 16
| 5
| 3
| 3
| *
| 7
|
X
| ?
| ?
| ?
| 4
| ?
| ?
| ?
| ?
| ?
| 3
| ?
| *
|
2 Tiles
3 Tiles
4 Tiles
5 Tiles
6 Tiles
7 Tiles
8 Tiles
9 Tiles
10 Tiles
11 Tiles
12 Tiles
13 Tiles
14 Tiles
16 Tiles
17 Tiles
18 Tiles
21 Tiles
22 Tiles
23 Tiles
25 Tiles
30 Tiles
32 Tiles
35 Tiles
61 Tiles
Last revised 2025-05-25.
Back to Polyiamond and Polyming Tiling
<
Polyform Tiling
<
Polyform Curiosities
Col. George Sicherman
[ HOME
| MAIL
]