# Pentomino Pair Full Oddities

A polyomino *oddity*
is a symmetrical figure formed by an odd number of copies of
a polyomino.
Symmetrical figures can also be formed with copies of two
different pentominoes.
Here are the smallest known full-symmetry oddities
for the 66 pairs of pentominoes.
Some were found by Helmut Postl.
See also

| F | I | L | N | P | T | U | V | W | X | Y | Z |

F | * | 13 | 13 | 17 | 9 | 9 | 17 | 17 | 9 | 5 | 5 | 9 |

I | 13 | * | 5 | 9 | 5 | 9 | 9 | 9 | 9 | 5 | 9 | 13 |

L | 13 | 5 | * | 9 | 5 | 13 | 9 | 13 | 17 | 5 | 9 | 13 |

N | 17 | 9 | 9 | * | 9 | 9 | 17 | 17 | 17 | 9 | 17 | 17 |

P | 9 | 5 | 5 | 9 | * | 5 | 13 | 5 | 9 | 5 | 5 | 5 |

T | 9 | 9 | 13 | 9 | 5 | * | 21 | 29 | 21 | 5 | 17 | 17 |

U | 17 | 9 | 9 | 17 | 13 | 21 | * | 17 | 25 | 5 | 9 | 25 |

V | 17 | 9 | 13 | 17 | 5 | 29 | 17 | * | 17 | 5 | 13 | 13 |

W | 9 | 9 | 17 | 17 | 9 | 21 | 25 | 17 | * | 5 | 9 | 13 |

X | 5 | 5 | 5 | 9 | 5 | 5 | 5 | 5 | 5 | * | 5 | 5 |

Y | 5 | 9 | 9 | 17 | 5 | 17 | 9 | 13 | 9 | 5 | * | 5 |

Z | 9 | 13 | 13 | 17 | 5 | 17 | 25 | 13 | 13 | 5 | 5 | * |

### 5 Tiles

### 9 Tiles

### 13 Tiles

### 17 Tiles

### 21 Tiles

### 25 Tiles

### 29 Tiles

Solutions shown above that are holeless are not shown here.
### 9 Tiles

### 13 Tiles

### 17 Tiles

### 21 Tiles

### 25 Tiles

### 29 Tiles

### 37 Tiles

Last revised 2024-04-28.

Back to Polyform Oddities
<
Polyform Curiosities

Col. George Sicherman
[ HOME
| MAIL
]