Tetrahex-Pentahex Pair Hex-Convex Shapes

Introduction

A polyhex is said to be hex-convex if every line joining the centers of two of its cells lies in its interior. Here are the smallest known hex-convex polyhexes that can be formed with copies of a tetrahex and a pentahex, using at least one of each.

See also

  • Tiling a Hex-Convex Polyhex with a Polyhex
  • Pentahex Pair Hex-Convex Shapes
  • If you find a smaller solution or solve an unsolved case, please write.

    Nomenclature

    Tetrahexes

    Pentahexes

    Table of Results

    Each figure shows the number of cells in the corresponding tiling.

     5A5C5D5E5F5H5I5J5K5L5N5P5Q5R5S5T5U5V5W5X5Y5Z
    4I346091978759422691914421852110222366561440
    4J17269212121131317131491821133013171818917
    4O9149137821314131813914181313108189139141
    4Q917913132117921139917182129131818171318
    4S1818392458542218181470183024
    4U17181391826311818191314182669601327114131428
    4Y18254184419191928

    Navigation

    [9 Cells] [13 Cells] [14 Cells] [17 Cells] [18 Cells] [19 Cells] [21 Cells] [22 Cells] [23 Cells] [24 Cells]
    [26 Cells] [27 Cells] [28 Cells] [29 Cells] [30 Cells] [31 Cells] [34 Cells] [39 Cells] [40 Cells] [42 Cells]
    [44 Cells] [52 Cells] [54 Cells] [56 Cells] [58 Cells] [60 Cells] [66 Cells] [69 Cells] [70 Cells]
    [75 Cells] [78 Cells] [108 Cells] [110 Cells] [114 Cells] [141 Cells] [182 Cells] [213 Cells]

    Solutions

    These minimal known solutions are not necessarily unique.

    9 Cells

    13 Cells

    14 Cells

    17 Cells

    18 Cells

    19 Cells

    21 Cells

    22 Cells

    23 Cells

    24 Cells

    26 Cells

    27 Cells

    28 Cells

    29 Cells

    30 Cells

    31 Cells

    34 Cells

    39 Cells

    40 Cells

    42 Cells

    44 Cells

    52 Cells

    54 Cells

    56 Cells

    58 Cells

    60 Cells

    66 Cells

    69 Cells

    70 Cells

    75 Cells

    78 Cells

    108 Cells

    110 Cells

    114 Cells

    141 Cells

    182 Cells

    213 Cells

    Last revised 2025-08-30.


    Back to Polyhex Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]