Tiling a Badge with Two Pentahexes

Introduction

A polyhex is a plane figure formed by joining equal regular hexagons edge to edge. A pentahex is a polyhex with 5 cells. There are 22 pentahexes, not distinguishing reflections and rotations.

Let a polyhex badge be a polyhex whose cell centers form a convex hexagon whose alternate sides have equal length. Here I study the problem of arranging copies of two given pentahexes to form a badge.

A triangular polyhex is an extreme form of a badge. Many of the solutions below are triangular. See the bottom of the page for non-triangular variants.

Carl Schwenke and Johann Schwenke contributed some improvements.

Nomenclature

Table of Results

This table shows the number of tiles in the smallest known badges. If you find a smaller badge or solve an unsolved pair, please write.

 ACDEFHIJKLNPQRSTUVWXYZ
A18921233915912999151261234212141999
C1854215125113518121512153318121118
D955912512955595912129129212
E242512959181295996014412219999
F121591212152733121251218542715918
H3312129122733129123315519
I951551527152495918211828982124125110259
J151351292733155129121212661218315
K91891833245121291230129
L1212512121291212551212121212121212912
N915591295912591212151518121215912
P91255512912959121112121212129912
Q915991218121212121215279
R153359183321121212121112151233141912
S12696018121512129
T123121442898661215122915
U42121215212430121812151515930
V1218921545112121212121227121229153351912
W141121292751121212333312
X999151021812159141519
Y911299953999999915991299
Z918129189151212121230129

Navigation

[2 Tiles] [3 Tiles] [5 Tiles] [9 Tiles] [11 Tiles] [12 Tiles] [15 Tiles] [18 Tiles] [21 Tiles] [24 Tiles] [27 Tiles] [29 Tiles] [30 Tiles] [33 Tiles] [42 Tiles] [51 Tiles] [54 Tiles] [60 Tiles] [66 Tiles] [102 Tiles] [123 Tiles] [126 Tiles] [135 Tiles] [141 Tiles] [144 Tiles] [2124 Tiles] [2898 Tiles] [Non-Triangular Variants]

2 Tiles

3 Tiles

5 Tiles

9 Tiles

11 Tiles

12 Tiles

15 Tiles

18 Tiles

21 Tiles

24 Tiles

27 Tiles

29 Tiles

30 Tiles

33 Tiles

42 Tiles

51 Tiles

54 Tiles

60 Tiles

66 Tiles

102 Tiles

123 Tiles

126 Tiles

135 Tiles

141 Tiles

144 Tiles

2124 Tiles

2898 Tiles

Non-Triangular Variants

Last revised 2025-08-15.


Back to Polyhex Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]