A polydrafter is *proper* if its cells conform to the
polyiamond (triangle) grid, and *extended* if some do not.

Below I show how to make a minimal convex figure using copies of two tridrafters, at least one of each. These solutions are not necessarily unique, nor are their tilings. If you find a solution with fewer tiles, or solve an unsolved case, please write.

See also Convex Figures with Didrafter Pairs.

- 2 Tiles
- 3 Tiles
- 4 Tiles
- 5 Tiles
- 6 Tiles
- 7 Tiles
- 8 Tiles
- 9 Tiles
- 10 Tiles
- 11 Tiles
- 12 Tiles
- 14 Tiles
- 16 Tiles
- 17 Tiles
- 18 Tiles
- 20 Tiles
- 22 Tiles
- 23 Tiles
- 24 Tiles
- 26 Tiles
- 29 Tiles
- 36 Tiles
- 38 Tiles
- 40 Tiles
- 42 Tiles
- 48 Tiles
- 52 Tiles
- Lost Sheep
## 2 Tiles

## 3 Tiles

## 4 Tiles

## 5 Tiles

## 6 Tiles

## 7 Tiles

## 8 Tiles

## 9 Tiles

## 10 Tiles

## 11 Tiles

## 12 Tiles

## 14 Tiles

## 16 Tiles

## 17 Tiles

## 18 Tiles

## 20 Tiles

## 22 Tiles

## 23 Tiles

## 24 Tiles

## 26 Tiles

## 29 Tiles

## 36 Tiles

## 38 Tiles

## 40 Tiles

## 42 Tiles

## 48 Tiles

## 52 Tiles

## Lost Sheep

No convex pairing is known for any of these five tridrafters:Each can form a convex shape with copies of two other tridrafters:

Last revised 2020-09-08.

Back to Polyform Tiling < Polyform Curiosities

Col. George Sicherman [ HOME | MAIL ]