If a pair of hexominoes can form a rectangle, they can form an L shape by joining two rectangles, one with each orientation. If the rectangle is a square, three squares can be joined to form an L shape.
Many of the solutions shown were formed in this way, often from rectangular tilings discovered by Mike Reid. They are not all known to be the smallest possible. If you find a smaller solution or solve an unsolved case, please write.
Patrick M. Hamlyn improved some of my solutions. So did Carl Schwenke and Johann Schwenke.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | • | 2 | 8 | 8 | 2 | 9 | 2 | 9 | 27 | 12 | 29 | 9 | 3 | 5 | 8 | 3 | 35 | 9 | 29 | 27 | 7 | 27 | ? | 8 | 5 | 27 | 98 | 29 | 3 | 18 | 2 | 479 | 21 | ? | ? |
2 | 2 | • | 6 | 2 | 2 | 5 | 2 | 9 | 5 | 7 | 15 | 6 | 3 | 3 | 4 | 3 | 6 | 8 | 16 | 14 | 3 | 10 | 10 | 3 | 12 | 5 | 14 | 10 | 2 | 3 | 2 | 13 | 10 | 13 | 21 |
3 | 8 | 6 | • | 19 | 5 | 24 | 6 | 15 | 13 | 19 | 22 | 6 | 6 | 7 | 14 | 2 | 3 | 11 | 16 | 19 | 6 | 8 | 23 | 11 | 8 | 19 | 20 | 41 | 8 | 32 | 3 | 20 | 33 | 188 | 66 |
4 | 8 | 2 | 19 | • | 5 | 43 | 5 | × | × | 34 | × | × | 6 | 7 | × | 4 | 18 | × | × | × | 10 | 31 | × | × | 14 | × | × | × | 2 | 32 | 4 | × | ? | × | × |
5 | 2 | 2 | 5 | 5 | • | 48 | 2 | ? | 25 | 54 | ? | 2 | 3 | 5 | ? | 3 | 29 | 3 | 6 | ? | 3 | 6 | 5 | 4 | 6 | 5 | 6 | 2 | 3 | 6 | 2 | 5 | ? | ? | ? |
6 | 9 | 5 | 24 | 43 | 48 | • | 2 | ? | 54 | 300 | ? | 35 | 13 | 12 | 188 | 36 | 14 | 22 | 28 | ? | 6 | 204 | 16 | 13 | ? | 196 | ? | ? | 8 | ? | 5 | 328 | 216 | ? | ? |
7 | 2 | 2 | 6 | 5 | 2 | 2 | • | 2 | 7 | 2 | 6 | 3 | 3 | 5 | 10 | 3 | 9 | 3 | 5 | 19 | 2 | 5 | 3 | 3 | 8 | 7 | 7 | 5 | 2 | 5 | 2 | 5 | 20 | 7 | 8 |
8 | 9 | 9 | 15 | × | ? | ? | 2 | • | × | 800 | × | × | 36 | 28 | × | 28 | ? | × | × | × | 28 | ? | × | × | ? | × | × | × | 6 | ? | 3 | × | ? | × | × |
9 | 27 | 5 | 13 | × | 25 | 54 | 7 | × | • | 37 | × | × | 19 | 8 | × | 8 | ? | × | × | × | 7 | ? | × | × | ? | × | × | × | 16 | 89 | 10 | × | ? | × | × |
10 | 12 | 7 | 19 | 34 | 54 | 300 | 2 | 800 | 37 | • | ? | 26 | 10 | 8 | 73 | 12 | 304 | 16 | ? | ? | 11 | 75 | ? | 7 | ? | ? | 216 | ? | 4 | 272 | 3 | 66 | ? | ? | ? |
11 | 29 | 15 | 22 | × | ? | ? | 6 | × | × | ? | • | × | 6 | 32 | × | 20 | 6 | × | × | × | 7 | 28 | × | × | ? | × | × | × | 8 | ? | 8 | × | ? | × | × |
12 | 9 | 6 | 6 | × | 2 | 35 | 3 | × | × | 26 | × | • | 15 | 28 | × | 16 | ? | × | × | × | 8 | ? | × | × | ? | × | × | × | 11 | 13 | 5 | × | ? | × | × |
13 | 3 | 3 | 6 | 6 | 3 | 13 | 3 | 36 | 19 | 10 | 6 | 15 | • | 6 | 6 | 4 | 8 | 18 | 14 | 10 | 3 | 6 | 24 | 19 | 10 | 10 | 10 | 13 | 4 | 13 | 3 | 6 | 6 | 3 | 4 |
14 | 5 | 3 | 7 | 7 | 5 | 12 | 5 | 28 | 8 | 8 | 32 | 28 | 6 | • | 10 | 3 | 10 | 3 | 8 | 6 | 3 | 23 | 44 | 4 | 19 | 20 | 30 | 15 | 5 | 4 | 5 | 7 | 8 | 7 | 50 |
15 | 8 | 4 | 14 | × | ? | 188 | 10 | × | × | 73 | × | × | 6 | 10 | • | 4 | ? | × | × | × | 7 | 16 | × | × | 6 | × | × | × | 4 | ? | 8 | × | ? | × | × |
16 | 3 | 3 | 2 | 4 | 3 | 36 | 3 | 28 | 8 | 12 | 20 | 16 | 4 | 3 | 4 | • | 18 | 29 | 8 | 3 | 4 | 36 | 38 | 8 | 10 | 10 | 8 | 10 | 4 | 47 | 3 | 4 | 8 | 36 | 92 |
17 | 35 | 6 | 3 | 18 | 29 | 14 | 9 | ? | ? | 304 | 6 | ? | 8 | 10 | ? | 18 | • | 240 | 200 | ? | 3 | ? | ? | ? | ? | 47 | 336 | ? | 4 | 18 | 10 | 53 | 28 | ? | ? |
18 | 9 | 8 | 11 | × | 3 | 22 | 3 | × | × | 16 | × | × | 18 | 3 | × | 29 | 240 | • | × | × | 22 | ? | × | × | ? | × | × | × | 18 | 58 | 7 | × | ? | × | × |
19 | 29 | 16 | 16 | × | 6 | 28 | 5 | × | × | ? | × | × | 14 | 8 | × | 8 | 200 | × | • | × | 16 | ? | × | × | ? | × | × | × | 4 | ? | 10 | × | ? | × | × |
20 | 27 | 14 | 19 | × | ? | ? | 19 | × | × | ? | × | × | 10 | 6 | × | 3 | ? | × | × | • | 10 | ? | × | × | ? | × | × | × | 32 | ? | ? | × | ? | × | × |
21 | 7 | 3 | 6 | 10 | 3 | 6 | 2 | 28 | 7 | 11 | 7 | 8 | 3 | 3 | 7 | 4 | 3 | 22 | 16 | 10 | • | 8 | 25 | 4 | 25 | 17 | 22 | 22 | 4 | 13 | 4 | 16 | 4 | 34 | 40 |
22 | 27 | 10 | 8 | 31 | 6 | 204 | 5 | ? | ? | 75 | 28 | ? | 6 | 23 | 16 | 36 | ? | ? | ? | ? | 8 | • | ? | ? | ? | ? | ? | ? | 8 | 224 | 10 | 28 | ? | ? | ? |
23 | ? | 10 | 23 | × | 5 | 16 | 3 | × | × | ? | × | × | 24 | 44 | × | 38 | ? | × | × | × | 25 | ? | • | × | ? | × | × | × | 3 | 63 | 9 | × | ? | × | × |
24 | 8 | 3 | 11 | × | 4 | 13 | 3 | × | × | 7 | × | × | 19 | 4 | × | 8 | ? | × | × | × | 4 | ? | × | • | 32 | × | × | × | 16 | 2 | 4 | × | ? | × | × |
25 | 5 | 12 | 8 | 14 | 6 | ? | 8 | ? | ? | ? | ? | ? | 10 | 19 | 6 | 10 | ? | ? | ? | ? | 25 | ? | ? | 32 | • | ? | ? | ? | 10 | ? | 6 | ? | ? | ? | ? |
26 | 27 | 5 | 19 | × | 5 | 196 | 7 | × | × | ? | × | × | 10 | 20 | × | 10 | 47 | × | × | × | 17 | ? | × | × | ? | • | × | × | 17 | ? | 10 | × | ? | × | × |
27 | 98 | 14 | 20 | × | 6 | ? | 7 | × | × | 216 | × | × | 10 | 30 | × | 8 | 336 | × | × | × | 22 | ? | × | × | ? | × | • | × | 26 | ? | 14 | × | ? | × | × |
28 | 29 | 10 | 41 | × | 2 | ? | 5 | × | × | ? | × | × | 13 | 15 | × | 10 | ? | × | × | × | 22 | ? | × | × | ? | × | × | • | 18 | ? | 6 | × | ? | × | × |
29 | 3 | 2 | 8 | 2 | 3 | 8 | 2 | 6 | 16 | 4 | 8 | 11 | 4 | 5 | 4 | 4 | 4 | 18 | 4 | 32 | 4 | 8 | 3 | 16 | 10 | 17 | 26 | 18 | • | 5 | 3 | 82 | 42 | 5 | 42 |
30 | 18 | 3 | 32 | 32 | 6 | ? | 5 | ? | 89 | 272 | ? | 13 | 13 | 4 | ? | 47 | 18 | 58 | ? | ? | 13 | 224 | 63 | 2 | ? | ? | ? | ? | 5 | • | 9 | ? | ? | ? | ? |
31 | 2 | 2 | 3 | 4 | 2 | 5 | 2 | 3 | 10 | 3 | 8 | 5 | 3 | 5 | 8 | 3 | 10 | 7 | 10 | ? | 4 | 10 | 9 | 4 | 6 | 10 | 14 | 6 | 3 | 9 | • | 15 | ? | 57 | 22 |
32 | 479 | 13 | 20 | × | 5 | 328 | 5 | × | × | 66 | × | × | 6 | 7 | × | 4 | 53 | × | × | × | 16 | 28 | × | × | ? | × | × | × | 82 | ? | 15 | • | ? | × | × |
33 | 21 | 10 | 33 | ? | ? | 216 | 20 | ? | ? | ? | ? | ? | 6 | 8 | ? | 8 | 28 | ? | ? | ? | 4 | ? | ? | ? | ? | ? | ? | ? | 42 | ? | ? | ? | • | ? | ? |
34 | ? | 13 | 188 | × | ? | ? | 7 | × | × | ? | × | × | 3 | 7 | × | 36 | ? | × | × | × | 34 | ? | × | × | ? | × | × | × | 5 | ? | 57 | × | ? | • | × |
35 | ? | 21 | 66 | × | ? | ? | 8 | × | × | ? | × | × | 4 | 50 | × | 92 | ? | × | × | × | 40 | ? | × | × | ? | × | × | × | 42 | ? | 22 | × | ? | × | • |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
Last revised 2024-02-28.