Hexomino Pair Rectangles with Domino Holes

Introduction

Here are rectangles that can be formed by specified pairs of hexominoes, using at least one of each, and allowing any number of two-cell holes that do not touch one another at corners.

See also Hexomino Pair Rectangles with Monomino Holes.

Hexomino Numbers

Table of Results

Bryce Herdt has shown that two hexominoes from rows or columns with purple cells cannot tile a rectangle, with or without holes.

 1234567891011121314151617181920212223242526272829303132333435
1 3694838115147551151110812678741081054312171216
2 34346364587454666663684848643368108
3 64868686485668446810446541066464891010
4 9384106××6××66×46×××914××15×××459××××
5 4464434434343448366343366733526878
6 86810431411414129412106614304665201516136105820208
7 336633363844364446124654866533361076
8 868×4143×10××1615×18?×××18?××?×××4145××××
9 1146×4116×6××106×8?×××612××23×××1279××××
10 55463431066864666616168612812108144741271713
11 1488×4148××6×46×68×××1110××34×××151612××××
12 775×3124××8×1212×1830×××11?××?×××476××××
13 5466494161064123443101212341251298144334896
14 556634315646123635985461486101412325981317
15 1148×4126××6××46416×××1016××14×××4412××××
16 56444104188661843412171436181761481414433661110
17 11646864??68303516124424?46??10223616339181142?
18 1066×364××6××109×1744××12?××?×××679××××
19 868×6146××16××128×1424××12?××?×××41911××××
20 12610×63012××16××125×3?××12?××?×××111317××××
21 63493441868111134106412121261386914142461281216
22 76414466?12610?4616186???6?20????410816???
23 886×365××12××1214×17?×××13?×?×××6129××××
24 745×354××8××58×6?×××820×28×××548××××
25 484156208?231234?126141410???6??28???886????
26 10410×6156××10××910×822×××9?××?××11109××××
27 886×7166××8××814×1436×××14?××?××81110××××
28 1066×3135××14××1412×1416×××14?××?××1189××××
29 544436341241544344364112465811811331511310
30 4365510314771673243371913410124810118331482232
31 3349253594126351239911176898691093312141112
32 1268×686××12××49×618×××1216××?×××151412×××
33 1789×82010××7××88×611×××8?××?×××11814×××
34 121010×7207××17××913×1142×××12?××?×××32211×××
35 16810×886××13××617×10?×××16?××?×××103212×××
 1234567891011121314151617181920212223242526272829303132333435

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

16 Tiles

17 Tiles

18 Tiles

19 Tiles

20 Tiles

22 Tiles

23 Tiles

24 Tiles

28 Tiles

30 Tiles

32 Tiles

34 Tiles

36 Tiles

42 Tiles

44 Tiles

Last revised 2026-01-26.


Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]