A scaled pentabolo is a pentabolo whose size may be altered without changing its shape. In geometric terms, it is a family of similar pentaboloes.
A trapezium (trapezoid in Canada and the U.S.) is a plane figure with four sides, two of them parallel. A isosceles trapezium is a trapezium whose two non-parallel sides have the same length.
For every pair of scaled pentaboloes, I show an isosceles trapezium that they can tile, using at least one of each, and using as few tiles as known to be possible. If you find a smaller solution or solve an unsolved case, please write.
Theoretically, scaled pentabolo 24 and any other scaled pentabolo can together tile an isosceles trapezium. I do not have tilings for all such pairs of scaled pentaboloes.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | ? | • | ? | ? | ? | ? | ? | 5 | 4 | ? | ? | ? | 4 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 26 | ? | ? | 3 | ? | ? | 8 |
8 | 18 | 5 | ? | ? | ? | 36 | ? | • | 4 | ? | 20 | 4 | ? | ? | 4 | ? | 3 | ? | ? | ? | 14 | ? | ? | ? | ? | 79 | 4 | 4 | 7 | ? |
9 | 8 | 4 | 7 | 6 | 8 | 6 | 7 | 4 | • | 8 | 8 | 8 | 6 | 6 | 5 | 7 | 9 | 5 | 7 | 8 | 4 | 8 | 6 | 5 | 6 | 4 | 3 | 4 | 5 | 3 |
24 | ? | 26 | 52 | 3 | ? | 23 | ? | ? | 5 | ? | 26 | 26 | ? | ? | 4 | 42 | 23 | 45 | 66 | 34 | 12 | ? | ? | • | ? | 66 | 16 | 43 | 17 | 42 |
26 | ? | ? | 14 | ? | ? | 6 | ? | 79 | 4 | ? | 6 | ? | 4 | ? | 7 | ? | ? | 35 | 41 | ? | 25 | ? | ? | 66 | ? | • | 5 | ? | ? | ? |
27 | 5 | 3 | 7 | 21 | 18 | 18 | 20 | 4 | 3 | 8 | 7 | 7 | 9 | 37 | 7 | 32 | 29 | 31 | 51 | 25 | 4 | 33 | 48 | 16 | 38 | 5 | • | 7 | 5 | 8 |
30 | 9 | 8 | 45 | 8 | ? | 8 | ? | ? | 3 | ? | 8 | 8 | ? | ? | 3 | 21 | ? | 64 | 16 | ? | 22 | ? | ? | 42 | ? | ? | 8 | 28 | ? | • |
Tiles | ||||||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 12 | 14 |
16 | 17 | 18 | 20 | 21 | 22 | 23 | 25 | 26 |
28 | 29 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
38 | 41 | 42 | 43 | 45 | 48 | 51 | 52 | 64 |
66 | 79 |
Last revised 2025-09-28.