Hexomino Pair Rectangles

Introduction

Here are the smallest known rectangles that can be formed by every pair of hexominoes, using at least one of each. These tilings originally appeared as links in the August 2010 issue of Erich Friedman's Math Magic.

Mike Reid found the last two tilings. Patrick Hamlyn independently found the solutions with 48 or fewer tiles.

See also

  • Scaled Hexomino Pair Rectangles
  • Isolated Hexomino Pair Rectangles, at Andrew's Blog
  • Hexomino Numbers

    Table of Results

    Of 595 possible pairs of hexominoes, 356 are known to be able to tile a rectangle.

     1234567891011121314151617181920212223242526272829303132333435
    1 312144143143914391455145361432391439?1443910032520350426??
    2 386410412491410654610122020612164144161646320142024
    3 1282861261220102066612446814441464201044624416449664
    4 146284446××54××68×46×××1230××16×××42812×?××
    5 4464424?2672?448?41846?4104412612342026???
    6 14101244423?49150?281820944862414?4102814?96??6?816496??
    7 34664338410446124144624475410865453624812
    8 141212×??3×400××4430×40?×××24?××?×××4?5×?××
    9 39420×26498×44××206×12?×××6?××?×××286612×?××
    10 149105472150440044?5614444281526??1650?8??96?6136480???
    11 391420×??10××?×442×28100×××1814××?×××28?12×?××
    12 14106×4284××56×2430×25?×××16?××?×××25166×?××
    13 5666418444201442444463914146422401414142542034101410
    14 556882063064423046320151854244281520303032610183648
    15 14412×?9412××44××464?×××1050××14×××4?12×?××
    16 564444844012282825434164014384042614141414477381450132
    17 36104618614??152100?620?16120100?4????64168?36145414??
    18 14126×4244××6××3915×40120××18?××?×××408012×?××
    19 32208×6146××?××1418×14100××12?××?×××4?14×?××
    20 392014×??24××?××145×3?××12?××?×××40??×?××
    21 146412444246161816641084181212103010282224242161018102836
    22 3912430101027??5014?4245040????10??????141121228???
    23 ?1614×485××?××2242×42?×××30?×?×××87012×?××
    24 1446×4144××8××408×6?×××10?×40×××30410×?××
    25 41441612?10?????14151414????28??40???14?12????
    26 39420×6968××?××1420×1464×××22?××?××20?15×?××
    27 1001610×12?6××96××1430×14168×××24?××?××30?18×?××
    28 321644×3?5××?××2530×14?×××24?××?××40?12×?××
    29 546446442862825434434044021483014203040339656356
    30 206242820?5?66136?16202?77680??16112704????316????
    31 33412283512412636123141214?101212101215181231620?6024
    32 5042016×61646××80××410×854×××1828××?×××96?20?××
    33 261444??9624?????1018?1414???10???????56?????
    34 ?2096×??8××?××1436×50?×××28?××?×××3?60×?×
    35 ?2464×??12××?××1048×132?×××36?××?×××56?24×?×
     1234567891011121314151617181920212223242526272829303132333435

    2 Tiles

    3 Tiles

    4 Tiles

    5 Tiles

    6 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    10 Tiles

    12 Tiles

    14 Tiles

    15 Tiles

    16 Tiles

    18 Tiles

    20 Tiles

    22 Tiles

    24 Tiles

    25 Tiles

    26 Tiles

    28 Tiles

    30 Tiles

    32 Tiles

    36 Tiles

    39 Tiles

    40 Tiles

    42 Tiles

    44 Tiles

    48 Tiles

    49 Tiles

    50 Tiles

    54 Tiles

    56 Tiles

    60 Tiles

    64 Tiles

    66 Tiles

    70 Tiles

    72 Tiles

    77 Tiles

    80 Tiles

    94 Tiles

    96 Tiles

    100 Tiles

    102 Tiles

    112 Tiles

    120 Tiles

    132 Tiles

    136 Tiles

    150 Tiles

    152 Tiles

    164 Tiles

    168 Tiles

    400 Tiles

    504 Tiles

    Last revised 2022-11-18.
    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]