Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed

  • Introduction
  • Enumeration
  • Table
  • Solutions
  • Introduction

    A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

    The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with one corner cell removed.

    If you find a smaller solution or solve an unsolved case, please write.

    See also

  • Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
  • Pentomino Pairs Tiling a Rectangle with One Corner Cell Removed
  • Enumeration

    Table of Results

    This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with three of its corner cells removed, using at least one of each pentomino.

     1234567891011121314151617181920212223242526272829303132333435
    1*888815815281541158888411541281528?8152812936828855928??
    28*88888208152014888891528288222282082215815828151522
    388*2920?84115674288152881941482282854142828645422?88286??
    48829*15648??80??928?941???2031??41???8?4????
    5882015*544?29??91522?8671528?46722152841428414860???
    6158?6454*9????484148??415454?14??20????48?28????
    7888849*8841488815920415284154415815149848281515
    8152041???8*?????54??????54???????28??????
    928815?29?8?*53??208?8????8???????28?41????
    1015156780??4?53*??1528?54?31??15??8????4?882???
    11412042???14???*?4848?28????1954??????8??????
    1215148?9488????*3148??????22???????41288????
    13888915418?20154831*15208215314228884131482048?415420815414
    148815282248854828484815*2882841288448?1467204854142820192841?
    158828???15?????2028*20????2048??8???9?8????
    1688898?9?85428?82820*80?2888??20????8?8454??
    174191941674120?????1528?80*???20????79?????????
    18151541?15544??31??3141???*??28?????????28????
    19412848?285415?????4228?28??*?41???????22??????
    20282822???28?????288?8???*48??????????????
    2115882041445481519228420820284148*4142448284148283142844841
    222822283167?15???54?84848?????41*??????8??48???
    23?2254?22?4?????41???????42?*????????????
    248814?15204??8??3114?20????4??*41?????4????
    251520284128?15?????48678?????48??41*?????8????
    2628828?41?8?????2020??79???28????*??28??????
    271292264?42?15?????4848??????41?????*???28????
    28361554?8?14??????54??????48??????*??8????
    2988228448928284841411498??22?288???28??*??????
    302815??14?8????285428??????31????????*?????
    3188848284?418?8202088?28??4??48?288??*????
    325592882?60?8??82??819?4????2848?????????*???
    33281586???28?????1528?54????4???????????*??
    34?15????15?????4141??????48????????????*?
    35?22????15?????4???????41?????????????*
     1234567891011121314151617181920212223242526272829303132333435

    Solutions

    So far as I know, these solutions have minimal area. They are not necessarily uniquely minimal.

    4 Tiles

    8 Tiles

    9 Tiles

    14 Tiles

    15 Tiles

    19 Tiles

    20 Tiles

    22 Tiles

    28 Tiles

    29 Tiles

    31 Tiles

    36 Tiles

    41 Tiles

    42 Tiles

    48 Tiles

    53 Tiles

    54 Tiles

    60 Tiles

    64 Tiles

    67 Tiles

    79 Tiles

    80 Tiles

    82 Tiles

    86 Tiles

    129 Tiles

    559 Tiles

    Last revised 2023-06-23.


    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]