Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed

  • Introduction
  • Enumeration
  • Table
  • Solutions
  • Introduction

    A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

    The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with two neighboring corner cells removed.

    If you find a smaller solution or solve an unsolved case, please write.

    See also

  • Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed
  • Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
  • Pentomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed
  • Enumeration

    Table of Results

    This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with two neighboring corner cells removed, using at least one of each hexomino.

     1234567891011121314151617181920212223242526272829303132333435
    1*933516516301643165395431643301330?853010333518551330??
    29*9881652181316137587131317187161371616162375718132328
    339*213589331641401616328161637382983849131713?5818?54451??
    4382*8588??43??83?833???1733??28???1693????
    558138*?8?51??13313?13531343?345163331717589517???
    616165858?*13????533316??382853?16??17??????37????
    75598813*858168839813883078831651398839301818
    8162133???8*????4816??????44???????28??????
    930816?51?5?*40??175?16????13???????302153????
    1016134143??8?40*??165?30?37??28??13????8?945???
    11431640???16???*?1816?30????21???????165?????
    12161316?13538????*2330??????23???????402313????
    135716833384817161823*31828231830281616281828282833282316169288
    14353313163165516303*231818169516?518234533333793051
    159828???9?????182*8????944??3???17?3????
    165716813?8?163030?2838*??441616??13????16?16851??
    1743131633533813?????2318??*???13??????????3??3
    18161337?13288??37??1818???*??38?????????33????
    19431738?43538?????3016?44??*?37???????30??????
    20301829???30?????289?16???*40??????????????
    211378173167441328212316591613383740*2837851283740282882884453
    223016383345?8?????161644?????28*??????16??44???
    23?1349?16?8?????28???????37?*????????????
    248713?3173??13??185?13????8??*30???1838????
    25516172833?16?????28183?????51??30*?????3????
    26301613?17?5?????2823??????28????*??30??????
    2710316??17?13?????2845??????37?????*???29????
    28332358?5?9?????3333??????40??????*??5????
    295718168?82830816402831716??30?2816?18?30??*??????
    30185?99?8?21?523233??????28??3?????*?????
    3157535373?539?13163316?33??8??83?295??*????
    325131844?17?9??45??167?83???2844?????????*???
    33301351???30?????99?51????8???????????*??
    34?23????18?????2830??????44????????????*?
    35?28????18?????851??3???53?????????????*
     1234567891011121314151617181920212223242526272829303132333435

    2 Tiles

    3 Tiles

    5 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    13 Tiles

    16 Tiles

    17 Tiles

    18 Tiles

    21 Tiles

    23 Tiles

    28 Tiles

    29 Tiles

    30 Tiles

    33 Tiles

    37 Tiles

    38 Tiles

    40 Tiles

    41 Tiles

    43 Tiles

    44 Tiles

    45 Tiles

    48 Tiles

    49 Tiles

    51 Tiles

    53 Tiles

    58 Tiles

    69 Tiles

    103 Tiles

    513 Tiles

    Last revised 2023-07-07.


    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]