Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed

  • Introduction
  • Enumeration
  • Table
  • Solutions
  • Introduction

    A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

    The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with two opposite corner cells removed.

    If you find a smaller solution or solve an unsolved case, please write.

    See also

  • Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed
  • Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
  • Pentomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed
  • Enumeration

    Table of Results

    This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with two opposite corner cells removed, using at least one of each hexomino.

     1234567891011121314151617181920212223242526272829303132333435
    1*944816816301643168438431643171630?9163013337830756917??
    29*9916168161616131689581616131881616816916238168189916
    349*41644898301616164316830131716283081691644165683330?82
    4494*1656831656?88438388??1616?318???16168????
    58161616*563?996?13318?3301628?844881616281138316???
    61616445656*8?56??44303051?162830?8103?8?100??96?28158???
    7888838*39813888513168162888881616171613888281316
    8161693??3*18???930??????51???????8??????
    93016816956918*8??169308???387244?????5612856????
    101616305696?8?8*?621830566212030??18??8????8?762???
    11431316???13???*?2830?8????830??????16??????
    12161616813448??62?*2845??30???16???????40308????
    13881683308916182828*1382816182828816301830282840232818168288
    1449441830830930304513*381825169830828403862441728916164058
    153533?515?3056??83*8????1362?85??38163????
    16881683?13?8628?2888*38?40316??8????16?16844??
    174316838301616??120?301618?38*158??9????62120????16?3?
    18161630816288??30??1825??158*??29????????10818????
    19431313?283016?????2816?40??*?21???????16??????
    20171817???28?3???289?3???*9??????????????
    21168161688851818816881316929219*2840844184425281883086143
    2230162816441038?72?30?163062?????28*??????16160?18???
    23?1630?8?8?44???3082??????40?*????????????
    249883888??8??18888????8??*16???18?8????
    251616161816?16?????30405?????44??16*?????16????
    263099?1610016?????2838??62???18????*??8??????
    271331616?28?17?????2862??120???44?????*???30????
    28372344?11?16?????40443?????25??????*??3????
    2988161639613856816402317816??16?2816?18?8??*??????
    30301656168?8?128??30282816??108??18160???????*?????
    3178883288?567?8189316?18??8??816?303??*????
    325691833?161588??62??1616?816???3018?????????*???
    3317930???28?????816?44????8???????????*??
    34?9????13?????2840??3???61????????????*?
    35?1682???16?????858??????43?????????????*
     1234567891011121314151617181920212223242526272829303132333435

    3 Tiles

    4 Tiles

    5 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    11 Tiles

    13 Tiles

    16 Tiles

    17 Tiles

    18 Tiles

    21 Tiles

    23 Tiles

    25 Tiles

    28 Tiles

    29 Tiles

    30 Tiles

    33 Tiles

    37 Tiles

    38 Tiles

    40 Tiles

    43 Tiles

    44 Tiles

    45 Tiles

    51 Tiles

    56 Tiles

    58 Tiles

    61 Tiles

    62 Tiles

    72 Tiles

    82 Tiles

    96 Tiles

    100 Tiles

    103 Tiles

    108 Tiles

    120 Tiles

    128 Tiles

    133 Tiles

    158 Tiles

    160 Tiles

    569 Tiles

    Last revised 2023-07-05.


    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]