Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed

  • Introduction
  • Enumeration
  • Table
  • Solutions
  • Introduction

    A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

    The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with the four corner cells removed.

    If you find a smaller solution or solve an unsolved case, please write.

    See also

  • Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed
  • Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed
  • Pentomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
  • Enumeration

    Table of Results

    This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with its four corner cells removed, using at least one of each hexomino.

     1234567891011121314151617181920212223242526272829303132333435
    1*866618618181816166610636184632832?663210634616652232??
    28*86121881861061046611410161461416661612211010616102122
    368*410744321046321016626166261616143216616163274321610846?88
    4664*142661465822166661418164?61416618?34?1618666?4?
    56121014*3211?1066?14610?1818181866656326321010101418610???
    61818742632*21?25??46263280?181632?1632?8????88?4????
    768461121*164141610164616161016324161666418161616614462626
    818183214??16*10???3632??????32??18????56??????
    91861061025410*14?11106666111010661847416??3242864???
    101810465866?14?14*?6616676166642??25??6????16?1610???
    111663222??16???*?1610?32????1450?6????610??16??
    1216101016144610?1166?*163216?10???25??10????42161650???
    1364166626163610161616*426321636465616163410323056163632161843614
    14666610324326610324*4410181810632666212632364444103258
    15106266?806?676?16264*16???361616?46??3216?6?66??
    16611161418?16?61632?32416*102?562616??14????32?321632??
    17364618181816?666?101610?102*???432?10?3232????6??6
    1818102616181610?1142??3618???*??32??4??????66????
    194616164183216?10???4618?56??*?32??16????60??????
    20321416?66?32?10???56103626???*16??????????????
    2186146616432625142516616164323216*36324362632321626116163646
    2232143214563216?6?50?163216?32???36*?4????3247?16???
    23?16161632?16?18???3466??????32?*10???????????
    246666686184661010641410416?4410*1614161614646?1432
    2566161832?6?74???32216?????36??16*?????6????
    26321616?10?4?16???3026??32???26??14?*??60??????
    2710612323410?18?????5632??32???32??16??*???42????
    28342174?10?16?????163632?????32??16???*??10????
    2961032161488165632166423641632??60?1632?14?60??*??????
    301610161818?16?42?1016324??????2647?6?????*?????
    3166106646?8616?16164632?66??11??46?4210??*????
    325221686610?14?410?50184?166???616?6???????*???
    33321046???46???16?4106632????16???????????*??
    34?21?4??26?????3632??????36??14?????????*?
    35?2288???26?????1458??6???46??32??????????*
     1234567891011121314151617181920212223242526272829303132333435

    Solutions

    So far as I know, these solutions have minimal area. They are not necessarily uniquely minimal.

    4 Tiles

    6 Tiles

    8 Tiles

    10 Tiles

    11 Tiles

    12 Tiles

    14 Tiles

    16 Tiles

    18 Tiles

    21 Tiles

    22 Tiles

    25 Tiles

    26 Tiles

    30 Tiles

    32 Tiles

    34 Tiles

    36 Tiles

    42 Tiles

    46 Tiles

    47 Tiles

    50 Tiles

    56 Tiles

    58 Tiles

    60 Tiles

    66 Tiles

    74 Tiles

    76 Tiles

    80 Tiles

    86 Tiles

    88 Tiles

    102 Tiles

    106 Tiles

    522 Tiles

    Last revised 2023-06-26.


    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]