Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed

  • Introduction
  • Nomenclature
  • Table
  • Solutions
  • Introduction

    A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

    The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with three corner cells removed.

    If you find a smaller solution or solve an unsolved case, please write.

    See also

  • Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed
  • Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed
  • Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
  • Pentomino Pairs Tiling a Rectangle with Three Corner Cells Removed
  • Enumeration

    Table of Results

    This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with three of its corner cells removed, using at least one of each pentomino. Since the parity of the target shapes is unbalanced, at least one of the hexominoes must have unbalanced cell parity. Those hexominoes that do not are shown in green.

     1234567891011121314151617181920212223242526272829303132333435
    1*×7×××××××?×16×?16××?××25××?×?××××4×?×
    2×*3×××××××4×10×1010××19××17××10×10××××13×?×
    373*3110?104517?27321719271719452737164742164525??27?164757??
    4××31*××××××?×16×219××?××19××37×?××××?×?×
    5××10×*×××××?×13×?16××42××62××?×37××××37×?×
    6××?××*××××?×42×??××47××?××?×?××××?×?×
    7××10×××*×××16×22×213××16××27××16×19××××19×?×
    8××45××××*××?×?×??××?××?××?×?××××?×?×
    9××17×××××*×?×17×224××?××?××?×?××××?×?×
    10××?××××××*?×32×??××?××?××?×?××××71×?×
    11?427???16???*??32??????2747?2????38?2????
    12××32×××××××?*32×??××?××?××?×?××××?×?×
    1316101716134222?1732?32*1617?245457622277145?3745??4549317??
    14××19×××××××32×16*3213××32××45××58×52××××17×?×
    15?10272??2?2???1732*47????2257?7????37??????
    161610171916?13?24????1347*???2724??13???????27???
    17××19×××××××?×2×??*×?××?××?×?××××42×?×
    18××45×××××××?×45×??×*?××?××?×?××××?×?×
    19?1927?424716?????4532????*?37???????72??????
    20××37×××××××?×76×?27××?*×?××?×?××××?×?×
    21××16×××××××27×22×2224××37×*37××37×37××××2×?×
    222517471962?27???47?274557?????37*??????62??3???
    23××42×××××××?×71×??××?××?*×?×?××××?×?×
    24××16×××××××2×45×713××?××?×*37×?××××2×?×
    25?104537??16??????58??????37??37*??????????
    26××25×××××××?×37×??××?××?××?*?××××?×?×
    27?10??37?19?????4552??????37?????*???32????
    28××?×××××××?×?×??××?××?××?×?*×××?×?×
    29××27×××××××38×?×37?××72××62××?×?×*××?×?×
    30××?×××××××?×45×??××?××?××?×?××*×?×?×
    31××16×××××××2×49×??××?××?××?×32×××*?×?×
    3241347?37?19??71??317?2742???23?2???????*2??
    33××57×××××××?×17×??××?××?××?×?××××2*?×
    34?????????????????????????????????*?
    35××?×××××××?×?×??××?××?××?×?××××?×?*
     1234567891011121314151617181920212223242526272829303132333435

    Solutions

    So far as I know, these solutions have minimal area. They are not necessarily uniquely minimal.

    2 Tiles

    3 Tiles

    4 Tiles

    7 Tiles

    10 Tiles

    13 Tiles

    16 Tiles

    17 Tiles

    19 Tiles

    22 Tiles

    24 Tiles

    25 Tiles

    27 Tiles

    31 Tiles

    32 Tiles

    37 Tiles

    38 Tiles

    42 Tiles

    45 Tiles

    47 Tiles

    49 Tiles

    52 Tiles

    57 Tiles

    58 Tiles

    62 Tiles

    71 Tiles

    72 Tiles

    76 Tiles

    Last revised 2023-06-19.


    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]